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 II. "INVESTIGATIONS INTO LOGICAL DEDUCTION"*
 GERHARD GENTZEN

 Introduction

 GERHARD GENTZEN's inaugural disserta tion for the University of G?ttingen, "Unter?
 suchungen ?ber das logische Schliessen,99 of which Mr.

 Manfred Szabo here presents an English transla?
 tion, is an important step in the deeper analysis of
 the logical calculus as it was begun in the thesis of
 Jacques Herbrand. In it Gentzen develops a new
 form of logical calculus, the "calculus of sequents,"
 which he introduces by starting first from a
 "natural calculus" and by then transforming it
 for his technical purposes. Its central theorem, an
 "elimination theorem," is proved in detail in the
 first part of the paper. The second part deals with
 applications of this elimination theorem as well as
 containing the proof of the equivalence of the
 calculus of sequents with the usual logical
 calculus.

 The Untersuchungen have had a profound
 influence on the development of mathematical
 logic and proof theory. The treatment of the
 calculus of sequents has been extended by Oiva
 Ketonen (in Finland) and by Haskell B. Curry (in
 the U.S.A.), and the elimination theorem of
 Gentzen has been transferred by Kurt Sch?tte to
 the usual logical calculus. The application of the
 elimination theorem to proof theory has been
 developed by Paul Lorenzen and Kurt Sch?tte
 through the use of "infinite induction." Lately
 Gaisi Takeuti (in Japan) has generalized the
 Gentzen calculus to a system of type theory in
 which the theory of real numbers can be formalized.
 Here the elimination theorem is not yet proved,
 but Takeuti shows that upon the assumption of the
 generalized elimination theorem the consistency
 of his system follows.

 Thus Gentzen's Untersuchungen are of great

 current interest, and an English edition of this
 treatise is to be very much welcomed.

 Paul Bernays
 (Part I)

 Synopsis

 The investigations that follow concern the
 domain o? predicate logic, called by H-A1 the "lower
 functional calculus." It comprises the types of
 inference that are continually used in all parts of

 mathematics. What remains to be added to these
 are axioms and forms of inference that may be
 considered as being proper to the particular
 branches of mathematics, e.g., in elementary
 number theory the axioms of the natural numbers,
 of addition, multiplication, and exponentiation, as
 well as the inference of complete induction; in
 geometry the geometric axioms.

 In addition to classical logic I shall also deal with
 intuitionist logic as formalized, for example, by

 Heyting2.
 The present investigations into classical and

 intuitionist predicate logic fall essentially into two
 only loosely connected parts.

 i. My starting point was this : The formalization
 of logical deduction, especially as it has been
 developed by Frege, Russell, and Hubert, is rather
 far removed from the forms of deduction used in
 practice in mathematical proofs. Considerable
 formal advantages are achieved in return. I
 intended, first of all, to set up a formal system which
 came as close as possible to actual reasoning. The
 result was a "calculus of natural deduction." ("JVJ"
 for intuitionist, "NK" for classical predicate logic.)
 This calculus then turned out to have specific pro?
 perties; in particular, the "law of the excluded
 middle," which intuitionists reject, occupies a
 special position.

 * Originally published in the Mathematische Zeitschrift, vol. 39 (1935), pp. 176-221. A second part of these investigations
 appeared under the same title, ibid., pp. 405-431. The American Philosophical Quarterly plans to publish this at a later date. The
 present English translation is by Mr. M. E. Szabo (McGill University, Montreal) whose thanks are due to his late wife Ann
 for her continued encouragement, and to Mr. Michael Dummett of All Souls College, Oxford, for reading the translation
 and suggesting improvements.

 1 Hilbert-Ackermann, Grundz?ge der theoretischen Logik, in this paper referred to as H-A.
 2 A. Heyting, Die formalen Regeln der intuitionistischen Logik und Mathematik, Sitzungsber. d. Preu?. Akad. d. Wiss., phys.-math.

 Kl. 1930, pp. 42-65.
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 I shall develop the calculus of natural deduction
 in the second Section of this paper together with
 some remarks concerning it.

 2. A closer investigation of the specific properties
 of the natural calculus have finally led me to a very
 general theorem which will be referred to below as
 the "Hauptsatz"
 The Hauptsatz* says that every purely logical

 proof can be reduced to a determinate, though not
 unique, normal form. Perhaps we may express the
 essential properties of such a normal proof by
 saying "it is not roundabout." No concepts enter
 into the proof other than those contained in its
 final result, and their use was therefore essential to
 the achievement of that result.

 The Hauptsatz is valid both for classical and for
 intuitionist predicate logic.

 In order to be able to enunciate and prove the
 Hauptsatz in a convenient form, I had to provide a
 logical calculus especially suited to the purpose. For
 this the natural calculus proved unsuitable. For,
 although it already contains the properties essential
 to the validity of the Hauptsatz, it does so only with
 respect to its intuitionist form, in view of the fact
 that the law of excluded middle, as pointed out
 earlier, occupies a special position in relation to
 these properties.

 In Section III of this paper, therefore, I shall
 develop a new calculus of logical deduction con?
 taining all the desired properties in both their
 intuitionist and their classical form. ("LJ" for
 intuitionist, "LK" for classical predicate logic.)
 The Hauptsatz will then be enunciated and proved
 by means of that calculus.

 The Hauptsatz permits of a variety o? applications.
 To illustrate this I shall develop a decision pro?
 cedure (IV, ?i) for intuitionist propositional logic
 in Section IV, and shall in addition give a new
 proof of the consistency of classical arithmetic
 without complete induction (IV, ?3).

 Sections III and IV may be read independently
 of Section II.

 3. Section I contains the stipulation of the terms
 and notations used in this paper.

 In Section V, I prove the equivalence of the logical
 calculi NJ, NK, and LJ, LK, developed in this
 paper, by means of a calculus modeled on the

 formalisms of Russell, Hubert, and Heyting (and
 which may easily be compared with them).
 {"LHJ" for intuitionist, "LHK" for classical pre?
 dicate logic.)

 4. Only the first part of my paper containing
 Sections I to III is presented here. Sections IV and
 V follow in the second part.

 Section I.
 Stipulation of Terms

 To the concepts "object," "function," "predic?
 ate," "proposition," "theorem," "axiom," "proof,"
 "inference," etc., in logic and mathematics there
 correspond, in the formalization of these disciplines,
 certain symbols or combinations of symbols. We
 divide these into :

 1. Symbols.
 2. Expressions, i.e., finite series of symbols.
 3. Figures, i.e., finite sets of symbols, with some

 ordering.
 Symbols count as special cases of expressions and

 figures, expressions as special cases of figures.
 In this paper we shall consider symbols, expres?

 sions, and figures of the following kind:
 1. Symbols.

 These divide into constant symbols and vari?
 ables.

 1.1 Constant symbols :
 Symbols for particular objects : 1, 2, 3, . . .
 Symbolsfor particularfunctions : -f ,?, .
 Symbols for particular propositions: T ("the true

 proposition"), F ("the false proposition").
 Symbols for particular predicates : =, <.
 Logical symbols*: & "and," V "or," => "if. . .

 then," =><= "is equivalent to," ~~| "not", ?
 "for all," 3 "there is a."
 We shall also use the terms : conjunction symbol,

 disjunction symbol, implication symbol, equiva?
 lence symbol, negation symbol, universal quantifier,
 existential quantifier.

 Auxiliary symbols : ), (, ->.
 1.2 Variables:
 Object variables. These we divide into free object

 variables : a, b, c, . . . m and bound object variables :
 n, . . . x,y, z.

 Propositional variables: A, B,C, . . .
 3 An important special case of the Hauptsatz had already been proved in a completely different way by Herbrand, cf. Section

 iv, ?2.
 4 We take the symbols V , ^, 3 from Russell. Russell's symbols for "and," "equivalent," "not," "all," viz : , =, ~} ( ), are

 already being used with a different meaning in mathematics. We shall therefore take Hubert's &, whereas Hubert's symbols
 for equivalence, all, and not, viz.: ^, ( ), -, again have already different meanings. Besides, the negation symbol represents
 a departure from the linear arrangement of symbols and is inconvenient for some purposes. We shall therefore use Heyting's
 symbols for equivalence and negation, and for "all" we shall use a symbol [namely V"] corresponding to 3.
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 We assume that an indefinite number of variables
 is available; if the alphabet does not suffice, we add
 numerical subscripts such as a7, C3.

 1.3. Boldface and Greek letters serve as "syn?
 tactic variables," i.e., not as symbols of the logic
 formalized, but as variables of our considerations
 concerning that logic. Their meaning is explained as
 they are used.

 2. Expressions.
 2.1. The concept of a propositional expression,

 called a "formula" for short (defined inductively) :
 (The concept of a formula is ordinarily used in a

 more general sense; the special case defined below
 might thus perhaps be described as a "purely
 logical formula.")

 2.11. A symbol for a particular proposition (i.e.,
 the symbols T and F) is a formula.
 A propositional variable followed by a number

 (possibly zero) of free object variables is a formula,
 e.g., Abab.

 The object variables are called the arguments of
 the propositional variables.

 Formulae of the two kinds mentioned are also
 called elementary formulae.

 2.12. If A is a formula, then ~~] A is also a
 formula.

 If A and B are formulae, then A&B, AVB,
 A => B are formulae.

 (We shall not introduce the symbol => <= into
 our presentation; it is in fact superfluous, since
 A => <= B may be regarded as an abbreviation of
 (A^B) & (B=>A).

 2.13. A formula not containing the bound object
 variable x yields another formula, if we prefix
 either ? x or 3x. At the same time we may substi?
 tute x in a number of places for a free object
 variable occurring in the formula.

 2.14. Brackets (or parentheses) are to be used to
 show the structure of a formula unequivocally.
 Example of a formula :

 3* ( ( (-}Abxa) \JBx)^(Yz(A&B) ) )

 By special convention the number of brackets
 may be reduced, but (with one exception, vide 2.4)
 no use will be made of this, since we do not have to
 write down many formulae.

 2.2. The number of logical symbols occurring in
 a formula is called the grade of a formula. (Thus an
 elementary formula is of grade o.)

 The logical symbol of a non-elementary formula
 that has been added last, in the construction of the
 formula according to 2.12 and 2.13, is called the
 terminal symbol of a formula.

 Formulae that may have arisen in the course of
 the construction of a formula according to 2.12 and
 2.13, including the formula itself, are called sub

 formulae.
 Example: the subformulae of A&N-xBxa are

 A, YxBxa, A8c N-xBxa as well as all formulae of the
 form Baa, where a represents any free object
 variable (this variable may also be a, for example).
 The grade of ASc y-xBxa is 2, the terminal symbol
 is &.

 2.3. The concept of a sequent:
 (This concept will not be used until Section III,

 and it is only then that the purpose of its intro?
 duction becomes apparent.)

 A sequent is an expression of the form

 Al5 . . . , AM > B1? . . . , Bv,

 where Al5 . . . , A?, Bl5 . . ., Bv may represent any
 formula whatever. (The ?>, like commas, is an
 auxiliary symbol and not a logical symbol.)

 The formulae A1? . . . , AM forms the antecedent,
 and the formulae Bl5 . . . , Bv, the succ?dent of the
 sequent. Both expressions may be empty.

 2.4. The sequent Al5. . ., AM ?> Bl5..., Bv has
 exactly the same intuitive meaning as the formula

 (Ai&.-.&A^) => (BiV ... V Bv).

 (By Ai&A^Ag we mean (A1&A2)&A3, likewise
 for V.)

 If the antecedent is empty, the sequent reduces
 to the formula Bx V ... V Bv.

 If the succ?dent is empty, the sequent means the
 same as the formula "~| (Ax& . . . &AM) or (Ax& . . .
 &A?)=>F.

 If both parts of the formula are empty, the
 sequent means the same as F, i.e., a false propo?
 sition.

 Conversely, to every formula there corresponds
 an equivalent sequent, e.g., the sequent whose
 antecedent is empty and whose succ?dent consists
 precisely ofthat formula.

 The formulae making up a sequent are called
 S-formulae (i.e., sequent formulae). By this we
 intend to indicate that we are not considering the
 formula by itself, but as it appears in the sequent.
 Thus we say, for example :

 "A formula occurs in several places in a sequent
 as an ^-formula" ; which may also be expressed as
 follows :

 "Several distinct ?"-formulae (which shall simply
 mean: having distinct occurrences in the sequent)
 are formally identical."
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 3. Figures.
 We require inference figures and proof figures.
 Such figures consist of formulae or sequents, as

 the case may be. In what follows (3.1 to 3.3, 3.5)
 we shall be speaking only of formulae, but whatever
 is said applies analogously to sequents ; all we need
 to do is to replace the word "formula," wherever it
 occurs, by the word "sequent."

 3.1. An inference figure may be written in the
 following way:

 Al' B ' Av iy > 0,

 where Al5 . . . , Av, B are formulae. A1? . . . , Av
 are then called the upper formulae and B the lower
 formula of the inference figure. (The concepts of an
 upper sequent and of a lower sequent of an infer?
 ence figure consisting of sequents are to be under?
 stood correspondingly.)
 We shall have to consider only particular

 inference figures and they will be stated for each
 calculus as they arise.

 3.2. A proof figure, called a derivation for short,
 consists of a number of formulae (at least one),
 which combine to form inference figures in the
 following way : Each formula is a lower formula of
 at most one inference figure; each formula (with
 the exception of exactly one : the endformula) is an
 upper formula of at least one inference figure ; and
 the system of inference figures is non-circular, i.e.,
 there is in the derivation no cycle (no series whose
 last member is again succeeded by its first member)
 of formulae of which each upper formula of an
 inference figure has the lower formula as the next
 one in the series.

 3.3. The formulae of a derivation that are not
 lower formulae of an inference figure are called
 initial formulae of the derivation.
 A derivation is in "tree form" if every one of its

 formulae is an upper formula of at most one inference
 figure.

 Thus all formulae except the endformula are
 upper formulae of exactly one inference figure.
 We shall have to treat only of derivations in tree

 form.
 The formulae which compose a derivation so

 defined are called D-formulae (i.e., derivation
 formulae). By this we wish to indicate that we are
 not considering merely the formula as such, but
 also its position in the derivation. In this sense we
 shall be using, for example, expressions such as:

 "A formula occurs in a derivation as a D
 formula."

 "Two distinct D-formulae (i.e., formulae occur?
 ring merely in distinct places in the derivation) are
 formally identical, viz., identical to the same
 formula."

 Thus by "A is the same D-formula as B" we mean
 that A and B are not only formally identical, but
 occur also in the same place in the derivation. We
 shall use the words "formally identical" to indicate
 identity of form regardless of place.

 For object variables, however, we shall not
 introduce a special term that would associate the
 variable with a specific place of occurrence in the
 formula. Thus we say, e.g.: "The same object
 variable occurs in two distinct D-formulae."

 3.4. The inference figures of the derivation are
 called D-inference figures (i.e., derivation inference
 figures).

 In a derivation consisting of sequents the S
 formulae of the Z)-sequents are called D-S

 formulae (i.e., derivation sequent formulae).
 3.5. A branch in a derivation is (following Hubert)

 a series of D-formulae whose first formula is an
 initial formula and whose last formula is the end
 formula, and of which each formula except the last
 is an upper formula of a D-inference figure whose
 lower formula is the next formula in the branch.

 We say that "a Z)-formula stands above {below)
 another Z)-formula" if there exists a branch in
 which the former occurs before (after) the latter.

 We are here thinking of the fact that a derivation
 is written in tree form with the initial formula
 above and the endformula below. (Examples may
 be found in II, ?4).

 Furthermore, we say that "a D-inference figure
 occurs above (below) a D-formula," if all formulae
 of the inference figure occur above (below) that
 D-formula.

 A derivation with the endformula A is also called
 a "derivation of A."

 The initial formulae of a derivation may be basic
 formulae or assumption formulae; more about their
 nature will have to be said as we reach the different
 calculi.

 Section ii.

 The Calculus of Natural Deduction

 ? 1

 Examples of Natural Deduction

 We wish to set up a formalism that reflects as
 accurately as possible the actual logical reasoning
 involved in mathematical proofs.
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 By means of a number of examples we shall first
 of all show what form actual reasoning tends to take
 and shall examine, for this purpose, three "valid
 formulae" and try to see their validity in the most
 natural way possible.

 i.i. First example :
 (XV (T&Z) ) => ( {X V r)&(X V Z) ) can be re?

 cognized as a valid formula (H-A, p. 28, formula
 19)
 The argument runs as follows: Suppose that

 either X or T&Z holds. We distinguish the two
 cases: 1. Xholds, 2. Y&Zholds. In the first case it
 follows that X\J T holds, and also X V Z> hence
 (XV T) & (X V Z) also nolds- In the second case
 T&Z holds, which means that both Tand Z hold.
 From T follows X V T; from ? follows X\J Z- Thus
 (X V T)8a(X V Z) again holds. The latter formula
 has thus been derived, in general, from X V ( TSc Z) ?
 i.e.,

 (xv (r&z) ) => ( {x v r)&(x v Z) ) holds.
 1.2. Second example:

 (3x V-yFxy) => ( YylxFxy).
 (H-A, formula 36, p. 60). The argument runs

 as follows : Suppose there is an x such that for all^
 Fxy holds. Let a be such an x. Then for allj>: Fay
 holds. Now let b be an arbitrary object. Then Fab
 holds. Thus there is an x, viz., a, such that Fxb
 holds. Since b was arbitrary, our result therefore
 holds for all objects, i.e., for allj> there is an x, such
 that Fxy holds. This yields our assertion.

 1.3. Third example :
 (~^3xFx)^(Yy~]Fy) is to be recognized as

 intuitionistically valid. We reason as follows:
 Assume there were no x for which Fx held. From
 this we wish to infer: For ally, ~~]Fy holds. Now
 suppose a were some object for which Fa held. It
 would then follow that there was an x for which
 Fx held, viz., a would be such an object. This
 contradicts our hypothesis that ~~\3xFx. We have
 therefore a contradiction, i.e., Fa cannot hold. But
 since a was completely arbitrary, it follows that for
 ally, ~]Fy holds. Q.E.D.
 We intend now to integrate proofs of the kind

 carried out in these three examples in an exactly
 defined calculus (in ?4, we shall show how these
 examples are presented in that calculus).

 ?2.
 Construction of the Calculus NJ

 2.1. We intend now to present a calculus for
 "natural" intuitionist derivations of valid formulae.

 The restriction to intuitionist reasoning is only
 provisional; we shall explain below (cf. ?5) our
 reasons for doing so and shall show in what
 way the calculus has to be extended for classical
 reasoning (by including the law of the excluded
 middle).

 Externally, the essential difference between
 "JVJ-derivations" and derivations in the systems of
 Russell, Hubert, and Heyting is the following: In
 the latter systems true formulae are derived from a
 series of "logical basic formulae" by means of a
 few forms of inference. Natural deduction, however,
 does not, in general, start from logical basic pro?
 positions, but rather from assumptions (cf. examples
 in ?1) to which logical deductions are applied. By

 means of a later inference the result is then again
 made independent of the assumption.

 Calculi of the former kind will be referred to as
 logistic calculi.

 2.2. After this preliminary remark we define the
 concept of an JVJ-derivation as follows :

 (Examples in ?4).
 An jVJ-derivation consists of formulae ordered

 in tree form (I, 3.3).
 (By demanding that the formulae are in tree

 form we are deviating somewhat from the analogy
 with actual reasoning. This is so, since in actual
 reasoning we necessarily have (1) a linear sequence
 of propositions due to the linear ordering of our
 utterances, and (2) we are accustomed to applying
 repeatedly a result once it has been obtained,
 whereas the tree form permits only of a single use
 of a derived formula. These two deviations permit
 us to define the concept of a derivation in a more
 convenient form and are not essential.)
 The initial formulae of the derivation are

 assumption formulae. Each of these is correlated
 with precisely one D-inference figure (and in
 fact occurs "above" [I. 3.5] the lower formula
 of that figure, as will be explained more fully
 below).

 All formulae that occur below an assumption
 formula, but still above the lower formula of the
 D-inference figure with which that assumption
 formula is correlated, that assumption formula
 itself included, are said to be dependent on that
 assumption formula.

 (Thus the inference makes all succeeding pro?
 positions independent of the assumption which is
 correlated with it.)

 According to what we have said the endformula
 of the derivation depends on no assumption
 formula.
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 2.21. We shall now state the permissible inference
 figures.

 The inference figure schemata below are to be
 understood in the following way :
 We obtain an JVJ-inference figure from one of

 the schemata by replacing A, B, C, D by arbitrary
 formulae; and VxFx (3xFx) by an arbitrary
 formula containing ? or 3 for its terminal symbol,
 where x indicates the bound object variable
 belonging to that terminal symbol; and Fa by the
 formula obtained from Fx by replacing the bound
 variable x, wherever it occurs, by the free object
 variable a.

 (For a we may, for instance, take a variable
 already occurring in Fx. For the inference figures
 ?-/ and 3-E, this possibility will, however, be
 excluded by the restriction on variables which
 follows below, but it remains for ? -E and 3-1. Nor
 need x occur at all in Fx, in which case Fa is, of
 course, identical with Fx. ? Fa is obviously always
 a subformula of ?xFx (3xFx), according to the
 definition of a subformula in I, 2.2.)

 Symbols written in square brackets have the
 following meaning : An arbitrary number (possibly
 zero) of formulae of this form, all formally identical,
 may be correlated with the inference figure as
 assumption formulae. They must then be initial
 formulae of the derivation and, moreover, occur in
 branches of proofs to which the particular upper
 formula of the inference figure belongs. (I.e., that
 upper formula above which the square bracket
 occurs in the scheme. This formula may already
 itself be an assumption formula.)
 The fact that there is a correlation in a derivation

 between a D-inference figure and the related
 assumption formulae must somehow be made
 explicit, for example, by jointly numbering them
 (cf. examples in ?4).
 The designations of the various inference figure

 schemata: &-/, Sc-E, etc., stand for the following:
 An inference figure formed according to a particu?
 lar schema is an "introduction" (/) or an "elimina?
 tion" (E) of the conjunction (&), the disjunction
 (V)5 the universal quantifier (?), the existential
 quantifier (3), the implication (=^), or of the
 negation ("""]). More about this in ?5.

 The Inference Figure Schemata :

 &-/ &-E \j-i y-E
 [A][B]

 A_B A&B A&B A B AVB C C
 A&B A B AVB AVB C

 ? -/ ?-? a-/ 3-E
 [Fa]

 Fa YxFx Fa 3xFx C
 ?xFx Fa IxFx CT~

 =>-I =>-? -\-I -|-?
 [A] [A]
 B A A 3 B F AHA F

 A^B B HA F D

 The free object variable of a ?-7 or 3-2?,
 represented by a in the respective schema, is called
 a proper variable. (This, of course, presupposes that
 there is such a variable, i.e., that the bound object
 variable represented by x occurs in the formula
 represented by Fx.)

 Restrictions on Variables :

 An JVJ-derivation is subject to the following
 restriction (for the significance of this restriction
 cf. ?3):

 The proper variable of an ? -I must not occur
 in the formula represented in the schema by
 ?xFx, nor in any assumption formula upon which
 that formula depends.
 The proper variable of an 3-E must not occur in

 the formula represented in the schema by 3xFx;
 nor in an upper formula represented by C; nor in
 any assumption formula upon which that formula
 depends, with the exception of the assumption
 formulae represented by Fa correlated with the
 3-E.
 This concludes the definition of the "NJ

 derivation."

 ?3
 Intuitive Sense of JVJ-Inference Figures

 We shall explain the intuitive sense of a number
 of inference figure schemata and thus try to show
 how the calculus in fact reflects "actual reasoning."

 =>-/: Expressed in words, this schema corres?
 ponds to the following inference: If B has been
 proved by means of assumption A, we have (this
 time without the assumption) : from A follows B.
 (Further assumptions may, of course, have been

 made and the result continues to depend on them.)
 V -E ("Distinction of Cases") : If A V B has been

 proved, one can distinguish two cases: What one
 first assumes is that A holds and derives, let us say,
 C from it. If it is then possible to derive C also by
 assuming that B holds, then C holds generally, i.e.,
 it is now independent of both assumptions (cf. i.i).
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 ?-/: If Fa has been proved for an "arbitrary
 a," then ?xFx holds. The presupposition that a
 is "completely arbitrary" can be expressed more
 precisely as: Fa must not depend on any assump?
 tion in which the object variable a occurs. And
 this, together with the obvious requirement that
 every occurrence of a in Fa must be replaced by an x
 in Fx, constitutes precisely the part of the "restric?
 tions on variables" relative to the schema of the
 ?-/.

 3-E: We have 3xFx. We then say: Suppose a is
 an object for which F holds, i.e., assume that Fa
 holds. (It is, of course, obvious that for a we must
 take an object variable which does not yet occur
 in 3xFx.) If, on this assumption, we then prove a
 proposition C which no longer contains a and does
 not depend on any other assumption containing
 a, we have proved C independently of the assump?
 tion Fa. We have here stated the part of the
 "restrictions on variables" that concerns the 3-E.
 (A certain analogy exists between the 3-E and the
 V -E since the existential quantifier is indeed the
 generalization of V 5 and the universal quantifier
 the generalization of &.)
 ~\-E: A and ~] A signify a contradiction, and

 this cannot obtain (law of contradiction). This is
 formally expressed by the inference figure ~~\-E,
 where F designates "the contradiction," "the
 false."

 ~~|-^: (Reductio ad absurdum.) If we can derive any
 false proposition (F) on an assumption A, then A
 is not true, i.e., ~~1 A holds.

 F The schema ?
 D

 If a false proposition holds, any arbitrary pro?
 position also holds.

 The interpretation of the remaining inference
 figure schemata is straightforward.

 ?4
 Representation of the three examples of?i

 as NJ-Derivations

 First example (1.1) :

 X X T Z

 2 zyr v" xVz^'j ^v~r v~/z\7^: v_/ xy (r&z) (xyr)Sc(x\f z) {xv *) & (xVZ) &_/
 (xyr)tk(xvz) _ V-?

 (zv (r& z) ) => ( (x\l T) & (xv Z) )

 In this example the tree form must appear
 somewhat artificial since it does not bring out the
 fact that it is after the enunciation of X V (Y&Z)
 that we distinguish the cases X, T&?.

 Second example (1.2):
 1

 W-y Fay
 Fab

 2 3* Fxb
 3x ?j> Fxy ?j> 3* Fxy

 y-y 3x Fxy
 (3* YyFxy) => {V-y3xFxy)

 Y~E
 3-1
 ?-/
 3-Ei
 =>-/2

 If we were to use linear ordering, then here too
 the assumption of the 3-E would quite naturally

 follow the upper formula on the left, as was the
 case in our treatment ofthat example in ?1.

 Third example (1.3):
 2 1

 Fa 3-/
 3xFx H 3xFx - - |_?

 H-?

 ?-/

 =>-/i

 H Fa

 Yy~]Fy

 (H 3xFx) => {y.y h Fy)

 ?5.
 Some Remarks Concerning the Calculus JVJ.

 The Calculus JVK

 5.1. The calculus JVJ lacks a certain formal
 elegance. This has to be put against the following
 advantages :

 5.11. A close affinity to actual reasoning, which
 had been our fundamental aim in setting up the
 calculus. The calculus lends itself in particular to
 the formalization of mathematical proofs.

 5.12. In most cases the derivations for valid
 formulae in our calculus are shorter than their
 counterparts in logistic calculi. This is so primarily
 because in logistic derivations one and the same
 formula usually occurs a number of times (as part
 of other formulae), whereas this happens only very
 rarely in the case of JV7-derivations.

 5.13. The designations given to the various
 inference figures (2.21) make it plain that our
 calculus is remarkably systematic. To every logical
 symbol &, V > ?, 3, =>, ~], belongs precisely one
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 inference figure which "introduces" the symbol?as
 the terminal symbol of a formula?and one which
 "eliminates" it. The fact that the inference figures
 Sc-E and V -I each have two forms constitutes a
 trivial, purely external deviation and is of no
 interest. The introductions represent, as it were, the
 "definitions" of the symbols concerned, and the
 eliminations are no more, in the final analysis, than
 the consequences of these definitions. This fact may
 be expressed as follows: In eliminating a symbol,
 the formula, whose terminal symbol we are dealing
 with, may be used only "in the sense afforded
 it by the introduction ofthat symbol." An example
 may clarify what is meant: We were able to
 introduce the formula A => B when there existed a
 derivation of B from the assumption formula A. If
 we then wished to use that formula by eliminating
 the ==> -symbol [we could, of course, also use it to
 form longer formulae, e.g., (A => B) V C, V -i], we
 could do this precisely by inferring B directly, once
 A has been proved, for what A => B attests is just
 the existence of a derivation of B from A. Note that

 in saying this we need not go into the "intuitive
 sense" of the => -symbol.

 By making these ideas more precise it should be
 possible to display the ^-inferences as single
 valued functions of their corresponding /-infer?
 ences, on the basis of certain requirements.

 5.2. It is possible to eliminate the negation from
 our calculus by regarding H A as an abbreviation
 of A=>F. This is permissible, since by replacing
 every HA by A=>F, and thus removing allH
 symbols from an j\(7-derivation, we obtain another
 jVJ-derivation (the inference figures ~~\-I and
 ~~]-E then become special cases of the =>-/and the
 => -E) and vice versa : If we replace every occur?
 rence of A=>F by HA in an JVJ-derivation, we
 obtain another jVJ-derivation.

 F
 The inference figure schema D occupies a special

 place among the schemata : It does not belong to a
 logical symbol, but to the propositional symbol F.

 5.3. The "law of the excluded middle99 and the
 calculus JVK.

 From the calculus JVJ we obtain a complete
 classical calculus JVK by adding the "law of the
 excluded middle" {tertium non datur), i.e.: As
 initial formulae of a derivation we now also allow
 in addition to the assumption formulae, "basic
 formulae" of the form A V HA, where A is to be
 replaced by an arbitrary formula.
 We have thus allotted to the law of the excluded

 middle, in a purely exterior way, a special position,

 and we have done this because we considered that
 formulation the "most natural." It would be
 perfectly feasible to introduce a new inference

 figure schema, say ?-? (a schema analogous to A.

 the one formed by Hilbert and Heyting) in place
 of the basic formula schema A V ~~I A. However,
 such a schema still falls outside the framework of
 the JVJ-inference figures, because it represents a
 new elimination of the negation whose admissi
 bility does not follow at all from our method of
 introducing the ~~| -symbol by the ~]-I.

 Section III.

 Deductive Calculi LJ, LK and the Hauptsatz

 ?i.
 The Calculi LJ and LK

 (Logistic Intuitionist and Classical Calculus)

 i.i. Preliminary remarks concerning the con?
 struction of the calculi LJ and LK.
 What we want to do is to formulate a deductive

 calculus (for predicate logic) which is "logistic" on
 the one hand, i.e., in which the derivations do not,
 as in the calculus NJ, contain assumption formulae,
 but which, on the other hand, takes over from the
 calculus NJ the division of the forms of inference
 into introductions and eliminations of the various
 logical symbols.
 The most obvious method of converting an NJ

 derivation into a logistic one is this : We replace a
 Z)-formula B, which depends on the assumption
 formulae Al9 . . . , AM, by the new formula (Ax&
 . . . &A/i) ^B. This we do in all Z)-formulae.
 We thus obtain formulae which are already valid

 in themselves, i.e., whose truth is no longer conditional
 on the truth of certain assumption formulae. This
 procedure, however, introduces the new logical
 symbols & and =>, necessitating additional
 inference figures for & and ^, and thus upsets the
 systematic character of our method of introducing
 and eliminating symbols. For this reason we have
 introduced the concept of a sequent (I, 2.3).
 Instead of the formula (Ax& . . . &AM)=>B, e.g.,
 we therefore write the sequent

 Al5 . . . , A? ?> B

 The sequent does not distinguish itself from the
 above formula in its intuitive meaning, but only in
 its formal structure (cf. I, 2.4).
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 Even now new inference figures are required that
 cannot be integrated into our system of introduc?
 tions and eliminations ; but we have the advantage
 of being able to reserve them special places within
 our system, since they no longer refer to logical
 symbols, but merely to the structure of the sequents.

 We therefore call these "structural inference
 figures," and the others "operational inference
 figures."

 In the classical calculus JVK the law of the
 excluded middle occupied a special place among
 the forms of inference (II, 5.3), because it could
 not be integrated into our system of introductions
 and eliminations. In the classical logistic calculus
 LK to be presented below, that peculiarity is
 removed. What makes this possible is that we
 admit into our system sequents with several formulae
 in the succ?dent, whereas the indicated transition
 from the calculus JVJ has resulted only in sequents
 with one formula in the succ?dent. (For the
 intuitive meaning of the general sequents cf. I, 2.4.)
 The symmetry thus obtained is more suited to
 classical logic. On the other hand, the restriction
 to at most one formula in the succ?dent will be
 retained for the intuitionist calculus LJ. (Cf. below

 ?An empty succ?dent means the same as if F stood
 in the succ?dent.)
 We have thus outlined a number of points that

 underlie the construction of the calculi that follow.
 Their form is largely determined, however, by
 considerations connected with the "Hauptsatz99
 (?2) whose proof follows later. That form cannot
 therefore be justified more fully at this stage.

 1.2. We now define the concepts of a "LK
 derivation" and a "LJ-derivation" as follows:

 An LJ- or Lif-derivation consists of sequents
 arranged in tree form (I, 3.3).

 The initial sequents of the derivation are basic
 sequents of the form

 D?>D,

 where D may be an arbitrary formula.
 Each inference figure of the derivation results

 from one of the schemata below by a substitution of
 the following kind (cf. II, 2.21) :
 Replace A, B, D, E by an arbitrary formula ; for

 ?xFx (3xFx) put an arbitrary formula having
 ? (3) for its terminal symbol, where x designates
 the associated bound object variable; for Fa
 put that formula which is obtained from Fx by
 replacing every occurrence of the bound object
 variable x by the free object variable a.

 For r, A, ?, A put arbitrary (possibly empty)
 sequences of formulae separated by commas.
 The following restriction is furthermore placed

 on LJ-inference figures (this is the only respect in
 which the concepts of a LJ- and a Z,if-derivation
 differ) :

 "In the succ?dent of each Z)-sequent no more
 than one S-formula is permissible."
 The designations of the various schemata for

 operational inference figures 8c-IS, Sc-IA, etc.,
 are intended to mean : An inference figure formed
 according to the schema is an introduction (/) in
 the succ?dent (S) or antecedent (A) of the con?
 junction (&), the disjunction (V)5 the universal
 quantifier (?), the existential quantifier (3), the
 negation (""])? or the implication (=>).

 The Inference Figure Schemata

 1.21. Schemata for structural inference figures:
 Thinning :

 in the antecedent
 r?> 0

 d, r? > &
 Contraction :

 in the antecedent

 d, D, r--> ?
 D,r~> &

 Interchange :
 in the antecedent

 A, D, E, r?> ?

 Cut:
 J,E,D, r

 in the succ?dent
 r~> ?

 in the succ?dent

 r?> 0, d, p.
 r~> @, d ;

 in the succ?dent

 r-> 0, E, D, At
 r~> 0, D, E, A '

 r ?> 0, d d, j --> /i
 r, j ?-> 0, yi

 1.22. Schemata for operational inference figures:

 r?> 0, a r?> 0, b &-IS:

 Sc-IA:

 y-IS:

 \J-IA:

 r?> 0, A&B

 a, r?>? b, r?
 A&B, r--^0 A&B, r?>?'
 a, r-^0 b, r?>0

 a v b, r ?^ 0

 r?-> 0, a r?> 0, b
 r?>0, AVB r?>0, AVB'
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 3-Ll: ^"^ 3xFx, r ?* 0

 Restrictions on Variables: The object variable in
 the last two schemata, which is designated by a and
 is called the proper variable of the ?-IS (3-14), must
 not occur in the lower sequent of the inference
 figure (i.e., not in J1, 0, and Fx).

 Fa r_?? 0 ?-/4: '

 -]-IS:

 3-/5:

 -|-Z4:

 =>-IS:

 =>-IA:

 ?xFx, r?+ 0'

 a, r?? @
 r~^@, -] a'

 r --+ 0, Fa
 r ? 0, 3xFx'

 r??e,A
 HA, r-^0 '

 A, J7-^ 0, B
 r?> 0, A = B'

 r?>0, A B,A-^A
 a => B, r, j ?> 0, yi

 1.3. Example of an ?J-derivation (following
 11,4.3):

 3xFx ?> 3xFx _ r .
 Fa ?> Fa _ ro ~| 3xFx, 3xFx ~> T
 Fa-->3^3"Zy 3*F*, H 3*F*--^ Interchan^

 Fa, H 3*F* -> -,-/*
 -i 3^ ?> n f* J_^

 -->("13^FA:)=>(?n^?

 1.4. Example of an ZJT-derivation (derivation
 of the "law of the excluded middle") :

 A~~*A--?-is
 ?>A,A\J ~\A y~IS
 "-^vn^Interchange
 ?k4V ~~\A,A\J ~| A V"75

 Contraction --?4 V ~1 A
 D

 ?2.

 Some Remarks Concerning the Calculi LJ and LK

 The Hauptsatz

 (We shall make no further use, in this paper, of
 remarks 2.1 to 2.3.)

 2.1. The schemata are not all mutually inde?
 pendent, i.e., certain schemata could be eliminated
 with the help of the remaining ones. Yet if they
 were left out, the "Hauptsatz" would no longer be
 valid.

 2.2. In general, we could simplify the calculi in
 various respects if we attached no importance to
 the Hauptsatz- To indicate this briefly: the infer?
 ence figures Sc-IS, \J-IA, &-L4, V -IS, ?-L4,
 3-IS, ~~\-IS, ~~\-IA, and =>-L4 in the calculus LK
 could be replaced by basic sequents according to
 the following schemata:

 A, B-->A&B AVB->A, B A&B-->A
 A&B?^B A?>AVB B-->AVB ?xFx?>Fa
 Fa?^3xFx ?>A,"~|A (law of the excluded
 middle)

 ~~1 A, A?> (law of contradiction), A =>B, A?>B

 These basic sequents and our inference figure s
 may easily be shown to be equivalent.

 The same possibility exists for the calculus LJ,
 with the exception of the inference figures V ?IA
 and ~~]-IS, since LJ-D-sequents may not in fact
 contain two ^-formulae in the succ?dent (cf. V,
 ?5)

 2.3. The distinction between intuitionist and
 classical logic is, externally, of a quite different
 nature in the calculi LJ and LK from that in the
 calculi NJ and NK. In the case of the latter, the
 distinction rests on the inclusion or exclusion of the
 law of the excluded middle, whereas for the
 calculi LJ and LK the difference is characterized by
 the restrictions on the succ?dent. (The fact that
 both distinctions are equivalent will become
 evident as a result of the equivalence proofs in
 Section V for all calculi discussed in this paper.)

 2.4. If ^-IS and the =>-L4 are excluded, the
 calculus LK is dual in the following sense : If we
 reverse all sequents of an ZJT-derivation (in which
 the =>-symbol does not occur), i.e., if for Al5 . . . ,
 A^?>Bl9 . . . , Bv we put Bv, . . . , Bx?>Afl, . . . ,
 Ax ; and if we exchange, in inference figures with
 two upper sequents, the right and left-hand upper
 sequents, including their derivations, and also
 replace every occurence of & by V ? ? by 3, V by
 &, and 3 by ? (in the case of & and V we also
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 have to change the respective scope of the symbols,
 e.g., for B V A we have to put A&B), then another
 LiT-derivation results.

 This can be seen at once from the schemata.
 (Special care was taken to order them in such a way
 as to bring out their symmetry.)

 (Cf. H-A's duality principle, p. 62).
 2.41. In any case, the ^-symbol may, in a well

 known manner, be eliminated from the calculus
 JVK, by regarding A=>B as an abbreviation for
 (~~]A)VB. It may easily be shown that the
 schemata for the "=> -IS and the => -IA may then be
 replaced by the schemata for V and ~~\.

 The calculus JVJ has no corresponding property.
 2.5. The most important fact for us with regard

 to the calculi LJ and LK is the following :
 Hauptsatz : Every LJ- or Z/i-derivation can be

 transformed into an LJ- or ZX-derivation that has
 the same endsequent and in which the inference
 figure termed a "cut" does not occur.

 2.51. The proof follows in ?3.
 In order to give greater clarity to the meaning of

 the Hauptsatz, we prove a simple corollary (2.513).
 For this purpose we introduce a number of

 expressions (which will be needed frequently later
 on) relating to operational inference figures.

 2.511. That S-formula which contains the logical
 symbol in its schema will be called the principal

 formula of an inference figure.
 For the Sc-IS and the &.-IA this is simply the

 ?"-formula of the form A&B; for the V ?IS and the
 V -IA it is A V B; for the y-IS and the ?-L4 it is
 ? xFx; for the 3-IS and the 3-14 it is 3xFx; for the
 ~]-IS and the ~~]-IA it is ~~]A; and for the =>-IS
 and the =>-L4 it is A^B.

 The ?-formulae designated by A, B, Fa in the
 schemata we call side formulae of their correspond?
 ing inference figures.
 They are always subformulae of the principal

 formula (according to the definition of a subformula
 in I, 2.2).

 2.512. We can now easily read off the following
 facts from the inference figure schemata: A
 principal formula occurs always in the lower
 sequent, a side formula always in the upper
 sequents of an operational inference figure.

 In the case of a formula occurring as an S
 formula in an upper sequent of an arbitrary
 inference figure without being a side formula or the

 D of a cut, it occurs also in the lower sequent as an
 S-formula.

 These two facts entail the following :
 If anywhere in an LJ- or Zif-derivation a

 formula occurs as an S-formula, and if we trace the
 branch of the derivation from the formula con?

 cerned up to the endsequent, the formula can only
 then vanish from that branch if it is the D of a cut

 or the side formula of an operational inference
 figure. In the latter case, however, there appears,
 in the next sequent, the principal formula of the
 inference figure of which our side formula is a
 subformula. To that principal formula we can
 then, continuing downwards, apply the same
 consideration, and so on. Thus we obtain the
 following corollary :

 2.513. Corollary of the Hauptsatz (subformula
 property) : In an LJ- or ZJT-derivation without
 cuts, all occurring Z^-S-formulae are subformulae of
 the S-formula that occurs in the endsequent.

 2.514. Intuitively speaking, these properties of
 derivations without cuts may be expressed as
 follows: The S-formulae become larger as we
 descend lower down in the derivation, never
 shorter. The final result is, as it were, gradually
 built up from its constituent elements. The proof
 represented by the derivation is not roundabout
 in that it contains only concepts which recur in the
 final result (cf. the synopsis at the beginning of this
 paper).

 Example: The derivation given above (1.3) for
 ?^(~]3xFx) => ( ?yHFy) may be written without
 a cut as follows :

 Fa ?> Fa
 Fa ?> 3xFx

 -\3xFx,Fa ?
 Fa, ~\3xFx

 etc., as above.

 3-IS
 -]-IA
 Interchange

 ?3
 Proof of the Hauptsatz

 The Hauptsatz runs as follows :
 Every LJ- or LiT-derivation can be transformed

 into another LJ- or LK?derivation with the same
 endsequent, in which no cuts occur.

 3.1. Proof of the Hauptsatz for LK-derivations.
 We introduce a new inference figure (in order to

 facilitate the proof) that constitutes a modified
 form of the cut, and which we call a mix.

 The schema of that figure runs as follows :
 r?> 0 a--* a
 r, a* ?> 0*, a

 In order to obtain an inference figure from this
 schema, 0 and A must be replaced by sequences of

This content downloaded from 132.174.255.116 on Wed, 18 May 2016 18:04:51 UTC
All use subject to http://about.jstor.org/terms



 INVESTIGATIONS INTO LOGICAL DEDUCTION 299

 formulae, separated by commas, in each of which
 occurs at least once (as a member of the sequence)
 a formula of the form M, called the "mix formula" ;
 and 0* and A* must be replaced by the same
 sequences of formulae, save that all formulae of the
 form M occurring as members of the sequence are
 omitted. (M is an arbitrary formula.) -Tand A must
 be replaced, as in the other schemata, by arbitrary
 (possibly empty) sequences of formulae, separated
 by commas.

 Example of a mix :

 A?+B, -\A B\JC,B,B,D,B-^
 A, B\/C, D?+~]A

 B is the mix formula.
 We notice at once that every cut may be trans?

 formed into a mix by means of a number of
 thinnings and interchanges. (Conversely, every mix

 may be transformed into a cut by means of a certain
 number of preceding interchanges and contrac?
 tions, though we do not use this fact.)

 In the following we shall consider only deriva?
 tions in which no cuts occur, but which may
 contain mixes instead.

 Since derivations in the old sense may be
 transformed into derivations of the new kind, it
 suffices, for the proof of the Hauptsatz, to show that
 a derivation of the new type may be transformed
 into a derivation with no mix.

 Furthermore, the following lemma is already
 sufficient :

 Lemma: Any derivation with a mix for its
 lowest inference figure, and not containing any
 other mix, may be transformed into a derivation
 (with the same endsequent) in which no mix
 occurs.

 From this the complete theorem easily follows:
 In an arbitrary derivation consider a mix above

 whose lower sequent no further mix occurs. The
 derivation for this lower sequent is then of the kind
 mentioned in the lemma, i.e., it may be transformed
 in such a way that it no longer contains a mix. In
 doing so, the rest of the derivation remains
 unchanged. This operation is then repeated until
 every mix has systematically been eliminated.

 It now remains for us to establish the proof of the
 lemma. (This proof extends into 3.2 inch)
 We have to consider a derivation whose lowest

 inference figure is a mix and which contains no
 other mix besides.

 The grade of the mix formula will be called the
 "grade of the derivation" (defined in I, 2.2).

 We shall call "rank of the derivation" the sum of
 its rank on the left and its rank on the right. These
 two terms are defined as follows :

 The left rank is the greatest number of sequents
 connected on a branch such that the last sequent is
 the left-hand upper sequent of the mix, where each
 formula of the branch contains the mix formula in
 the succ?dent.

 The right rank is (correspondingly) the greatest
 number of sequents connected on a branch whose
 lowest sequent is the right-hand upper sequent of the

 mix, and each formula of the branch contains the
 mix formula in the antecedent.

 The lowest possible rank is evidently 2.
 To prove the lemma we perform two complete

 inductions, one according to the grade y, the
 other according to the rank p of the derivation,
 i.e., we prove the theorem for a derivation of the
 grade y, assuming it to hold for derivations of a
 lower grade (in so far as there are such derivations,
 i.e., as long as y is not equal to zero), supposing,
 therefore, that derivations of a lower grade may
 already be transformed into derivations not
 containing a mix.

 Furthermore, we shall begin by considering the
 case where the rank p of the derivation equals 2
 (3.11), and after that the case of p > 2 (3.12),

 where we assume that the theorem already holds
 for derivations of the same grade, but of a lower
 rank.

 In the following bold-face capital letters will
 generally serve as syntactic variables for formulae,
 and Greek capital letters as syntactic variables for
 (possibly empty) sequences of formulae.

 In transforming derivations, we shall occasionally
 meet "identical inference figures," i.e., inference
 figures with the same upper and lower sequent.
 Since we have not admitted such figures in our
 calculus, they must be eliminated as soon as they
 occur; this is trivially possible by omitting one of
 the two sequents.

 The mix formula of the mix that occurs at the
 end of the derivation is designated by M. It is of
 grade y.

 3.10. Re-designating of free object variables in
 preparation for the transformation of derivations.
 We wish to obtain a derivation that has the

 following properties :
 3.101. For every ?-75 (3-IA) it holds that:

 Its proper variable occurs in the derivation only
 in sequents above the lower sequent of the ?-75
 (3-IA) and does not occur as a proper variable in
 any other Y-IS (3-IA).
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 3-102. This is achieved by re-designating the free
 object variables in the following way :
 We take a V-ZS (3-IA) above whose lower

 sequent either no further inference figures of this
 kind occur, or if they do, they have already been
 dealt with in a way to be outlined.

 In all sequents above the lower sequent of this
 inference figure we replace the proper variables by
 one and the same free object variable which, so
 far, has not yet occurred in the derivation. This
 obviously leaves the validity of the ?-IS (3-IA)
 as such unchanged. (The proper variables did in
 fact not occur in its lower sequent.) Furthermore,
 the remainder of the derivation remains correct, as
 is shown by the immediately following lemma:

 By applying this method systematically to every
 single ? -IS and 3-IA, the derivation thus remains
 correct throughout and at the conclusion obviously
 has the desired property (3.101). Furthermore, as
 was essential, the grade and rank of the derivation
 as well as its endsequent have remained unaltered.

 3.103. Now we give the still outstanding proof of
 the following lemma. (It is enunciated in a some?
 what more general form than is immediately
 necessary, since we shall have to apply it again
 later on (3.113.33).)

 "An ZJT-basic sequent or inference figure turns into
 a basic sequent or inference figure of the same
 kind, if we replace a free object variable, which is not
 the proper variable of the inference figure, in all its
 occurrences in the basic sequent or inference figure, by
 one and the same free object variable, provided again
 that that is not the proper variable of the inference
 figure."

 This holds trivially except for the ? -IS, the
 N--IA, the 3-IS and the 3-IA. Yet even here there
 is no cause for concern : the restrictions on variables
 are not violated, since we may neither substitute
 nor replace the proper variable. (This is the reason
 why both restrictions on variables are necessary.)
 Furthermore, the formula resulting from Fa is still
 obtained by substituting a for x in the formula
 resulting from Fx.
 Having prepared the way (3.10), we now

 proceed to the actual transformation of the
 derivation which serves to eliminate the mix
 occurring in it.

 As already mentioned, we distinguish two cases :
 p = 2 (3.11) andp> 2 (3.12).

 3.11. Suppose p = 2.
 We distinguish between a number of particular

 cases, of which cases 3.111, 3.112, 3.113.1, 3.113.2

 are especially simple in that they allow the mix to be
 immediately eliminated. The other cases (3.113.3)
 are the most important since their consideration
 brings out the basic idea behind the whole trans?
 formation. Here we use the induction hypothesis
 with respect to y, i.e., we reduce each one of the
 cases to transformed derivations of a lower grade.

 3.111. Suppose the left-hand upper sequent of the
 mix at the end of the derivation is a basic sequent.
 The mix then reads :

 M?>M A-->A
 M, A* ?>A

 which is transformed into :

 A ?> A possibly several interchanges
 M, J*_> A and contractions.

 That part of the derivation which is above
 A ?> A remains the same, and we thus already
 have a derivation without a mix.

 3.112. Suppose the right-hand upper sequent of
 the mix is a basic sequent. The treatment of this case
 is symmetric to that of the previous one. We have
 only to regard the two schemata as duals (cf. 2.4).

 3.113. Suppose that neither the left- nor the
 right-hand upper sequent of the mix is a basic
 sequent. Then both are lower sequents of inference

 figures since p = 2, and the right and left rank both
 equal 1, i.e.: In the sequents directly above the
 left-hand upper sequent of the mix, the mix formula

 M does not occur in the succ?dent; in the sequents
 directly above the right-hand upper sequent M does
 not occur in the antecedent.

 Now the following holds generally : If a formula
 occurs in the antecedent (succ?dent) of the lower
 sequent of an inference figure, it is either a principal
 formula or the D of a thinning, or else it also
 occurs in the antecedent (succ?dent) in at least one
 upper sequent of the inference figure.

 This can be seen immediately by looking at the
 inference figure schemata (1.21, 1.22).

 If we now consider the assumptions of the
 following three cases, we see at once that they
 exhaust all the possibilities that exist within case

 3.113.1. Suppose the left-hand upper sequent of
 the mix is the lower sequent of a thinning. Then the
 conclusion of the derivation runs :

 r?> 0
 r?> 0, M A -- A

 r,A*--+ &,a
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 This is transformed into :

 r?> @ possibly several thinnings
 r, A*_> 0, A and interchanges.

 That part of the derivation which occurs above
 A ?> A disappears.

 3.113.2. Suppose the right-hand upper sequent of
 the mix is the lower sequent of a thinning. This
 case can be dealt with symmetrically to the
 previous one.

 3.113.3. The mix formula M occurs both in the
 succ?dent of the left-hand upper sequent and in
 the antecedent of the right-hand upper sequent
 solely as the principal formula of one of the opera?
 tional inference figures.

 Depending on whether the terminal symbol of M
 is &, V5 ?, 3, "~]> =5, we distinguish the cases
 3.113.31 to 3.113.36 (a formula without logical
 symbols cannot be a principal formula).

 3.113.31. Suppose the terminal symbol of M is
 &. In that case the end of the derivation runs:

 A?* 0i, A & B A & B, ra?> @2 . -i-i!- ? - ? -i??-limx
 A? A?* ?i> ?2

 (and correspondingly for the other form of the
 Sc-IA, treated analogously.)
 We transform it into :

 rx?> e19 a a, r2-> 02 . -mix

 A? A*?* ?i*> ?2 possibly several thinnings
 A, T2 ?> Sl9 @2 and interchanges.

 We can now apply the induction hypothesis with
 respect to y to that part of the derivation whose
 lowest sequent is Fx, A*?> ?i*5 0^ because it has
 a lower grade than y. (A obviously contains fewer
 logical symbols than A&B.) This means that the

 whole derivation may be transformed into one with
 no mix.

 3.113.32. Suppose the terminal symbol of M is V
 This case is to be dealt with symmetrically to the
 previous one.

 3-113-33- Suppose the terminal symbol of M is
 ?. Then the end of the derivation runs :

 IW0, Fa Y_IS Fb, JW ?a ?_IA
 rx?> ?x, ?xFx ?xFx, r2?> 0,

 rv r2--> 01} 02
 2
 -mix.

 This is transformed into :

 A?> 0i> Fb Fb5 A~ 02 ??_?1_-?-f mix

 A? A*?> 0i*? 02 possibly several thinnings
 rv r2?> 619 02 and interchanges.

 Above the left-hand upper sequent of the mix,
 A?> 01? Fb, we write the same part of the
 derivation which previously occurred above
 A?> @x, Fa, yet having replaced every occurrence
 of the free object variable a by b. It now follows
 from the lemma 3.103, together with 3.101, that in
 performing this operation the part of the deriva?
 tion above I\?> 0l5 Fb has again become a
 correct part of the derivation. (By virtue of 3.101
 neither a nor b can be the proper variable of an
 inference figure occurring in that part of the
 derivation.) The same consideration may be
 applied to that part of the derivation which
 includes the sequent J\?> 0l5 Fb, since it too
 results from A?^ ?i> Fa by substitution of b for
 a. It is now in fact clear that by virtue of the
 restriction on variables for ?-/?, a could have
 occurred neither in I\ and 0l9 nor in Fx. Further?
 more, Fa results from Fx by substituting a for x,
 and Fb from Fx by substituting b for x. This is
 why Fb results from Fa by substituting b for a.

 The mix formula Fb in the new derivation has a
 lower grade than y. Therefore, according to the
 induction hypothesis, the mix may be eliminated.

 3.113.34. Suppose the terminal symbol of M is
 3. This case is resolved symmetrically to the
 previous one.

 3.113.35. Suppose the terminal symbol of M is
 ""! Then the end of the derivation runs:

 a, r1-^e1 r2-^?2,A
 A-^ia ha, r2-->@2 .

 ru r2~>01; @2 mix
 This is transformed into :

 A?> 02, A A, J\?* 0! mix

 A? A ** 02 ? 0i possibly several inter
 ri9 r2 ?> ?x, 0? changes and thinnings.

 The new mix may be eliminated by virtue of the
 induction hypothesis.

 3.113.36. Suppose the terminal symbol of M is
 3. Then the end of the derivation runs:
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 mix

 mix

 a, jy-> eub r->e,\ b,a-+a
 r1?? 01? A 3 B I? A => B, r, A ?* (9, 4

 A, A J --> Olf &, A mix

 This is transformed into :

 A, i>-> 019 B B, J --> /l
 r--> 0, A A, A, J??> ^*, A

 r, r*9 ?*?-? @*, e,*, a
 ====================================== possibly several mter

 A> A A > 0\i ?> A changes and thinnings

 (The asterisks are, of course, intended to be
 understood as follows : J* and 0* result from A and

 0X by omitting all 5-formulae of the form B; 7\*,
 A** and 0* result from J\, A* and 0 by omitting
 all S-formulae of the form A.)

 Now we have two mixes, but both mix formulae
 are of a lower grade than y. We first apply the
 induction hypothesis to the upper mix (i.e., to that
 part of the derivation whose lowest figure it is).
 Thus the upper mix may be eliminated. We can
 then also eliminate the lower mix.

 3.12. Suppose p > 2.
 To begin with, we distinguish two main cases:

 First case: The right rank is greater than 1 (3.121).
 Second case : The right rank is equal to 1 and the
 left rank is therefore greater than 1 (3.122). The
 second case may essentially be dealt with sym?

 metrically to the first.
 3.121. Suppose the right rank is greater than 1.
 I.e. : The right-hand upper sequent of the mix is

 the lower sequent of an inference figure, let us call
 it If, and M occurs in the antecedent of at least one
 upper sequent of If.

 The basic idea behind the transformation procedure
 is the following :

 In the case of p = 2, we generally reduced the
 derivation to one of a lower grade. Now, however,
 we shall proceed to reduce the derivation to one
 of the same grade, but of a lower rank, in order to be
 able to use the induction hypothesis with respect
 to p.
 The only exception is the first case, 3.121.1,

 where the mix may at once be altogether elimin?
 ated.

 In the remaining cases the reduction to deri?
 vations of a lower rank is achieved in the follow?
 ing way : The mix is, as it were, moved up one level

 within the derivation, beyond the inference figure
 If. (Case 3.121.231, for example, illustrates this
 point particularly well.) To speak more precisely,
 the left-hand upper sequent of the mix (which
 from now on will be designated by n?> U), at

 present occurring beside the lower sequent of If, is
 instead written next to the upper sequents of If. These
 now become upper sequents of new mixes. The
 lower sequents of these mixes are now used as
 upper sequents of a new inference figure that takes
 the place of If. This new inference figure takes us
 back either directly, or after having added further
 inference figures, to the original endsequent. Each
 new mix obviously has a rank smaller than p,
 since the left rank remains unchanged and the
 right rank is diminished by at least i.

 In the strict application of this basic idea special
 circumstances still arise which make it necessary to
 distinguish the corresponding cases and to deal
 with them separately.

 3.121.1. Suppose M occurs in the antecedent of
 the left-hand upper sequent of the mix. The end of
 the derivation runs :

 n~>27 A--+A , ? . ? , thus M occurs m n. n,A*--+Z*,A
 This is transformed into

 A--+A
 possibly several thinnings,

 If
 mix.

 JJ, J*_> 27*, A contractions and interchanges.

 3.121.2. Suppose M does not occur in the ante?
 cedent of the left-hand upper sequent of the mix.
 (This assumption is used for the first time in
 3.121.222.)

 3.121.21. Suppose If is a thinning, contraction,
 or interchange in the antecedent. Then the end of the
 derivation runs :

 W?? 0.
 n ?> ? s ?>

 n, 3*--+ 27*, 0

 This is transformed into :

 n--+z v?>0 .
 - mix

 n9 v* ?+ 27*, 0
 jt" possibly several interchanges

 3*, n ?> 27*, 0 *
 77 g* r?? ?a possibly several interchanges

 The inference figure marked ? is of the same kind
 as If, in so far as the ^-formulae designated in the
 schema of If (in 1.21) by D and E, were not equal
 to M. If D or E is equal to M, we have an identical
 inference figure (W* equals 3*).
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 The derivation for the lower sequent of the new
 mix has the same left rank as the old derivation,
 whereas its right rank is lower by i. Thus the mix
 may be completely eliminated by virtue of the
 induction hypothesis.

 3.121.22. Suppose If is an inference figure with
 one upper sequent, but not containing a thinning,
 contraction, or interchange in the antecedent.
 Then the end of the derivation runs :

 y,r-?o1If 77?> 2; 3,r-->Q2 .
 n, s*9 r*?> z*, Q2 mix*

 Here we have comprised in J1 the same S
 formulae that are designated by 71 in the schema of
 the inference figure (1.21, 1.22). Hence ?* may be
 empty or consist of a side formula of the inference
 figure, and 3 may be empty or consist of the
 principal formula of the inference figure.

 First of all, the end of the derivation is trans?
 formed into:

 -1-i mix
 n,v*9r*-->z*,Q1 ... . . ?- possibly several mter
 W, r*, n ?> Z*, Qx changes and thinnings
 3, r*, n?>z*, q2

 The lowest inference is obviously an inference
 figure of the same kind as If (taking jP*, 77 as the
 r of the inference figure and including 2* in the 0
 of the inference figure).
 We must only be careful not to violate the

 restrictions on variables (if If is a ?-75 or 3-IA):
 Any such violation is precluded by 3.101, which
 entails that a proper variable that may have
 occurred in If cannot have occurred in 77 and Z.

 The mix may be eliminated from the new
 derivation by virtue of the induction hypothesis.
 We therefore obtain a derivation with no mix

 and which is terminated by the following inference
 figure :

 y,r*,n-->z*,Q1
 3,r*,n-->z*,Q2

 In general, the endsequent is not yet of the form
 aimed at.

 Hence we proceed as follows :
 3.121.221. Suppose S does not contain M.
 In that case we perform a number of inter?

 changes, if necessary, and obtain the endsequent of
 the original derivation.

 3-121.222. Suppose 3 contains M. Then 3 is
 the principal formula of If and is equal to M. We
 then add :

 n ?> 27 m, r*, n ?> 27*, q2 . ? mix
 n, r*, n* ?-> 27*, 27*, q2

 possibily several
 n, T* ?> 27*, Q2 contractions and

 interchanges

 Once again, this is the endsequent of the
 original derivation.

 (Above n ?> 27 we once again write the
 derivation associated with it.)

 Thus we have another mix in the derivation. The
 left rank of our derivation is the same as that of the

 original derivation. The right rank is now equal to
 1. This is so because directly above the right-hand

 upper sequent occurs the sequent.

 V, r*, ?7-->27*, Ox

 M no longer occurs in its antecedent, for jT* does
 not contain M, nor does II, because of 3.121.2 ; and

 W contains at most one side formula of If, which can?
 not be equal to M, since the principal formula of If is
 equal to M.

 Hence this mix, too, may be eliminated by virtue
 of the induction hypothesis.

 3.121.23. Suppose If is an inference figure with
 two upper sequents, i.e., an &-ZS*, y-IA, or a
 ^-IA.

 (In view of the application to intuitionist logic
 (3.2) we shall deal with each possibility in greater
 detail than would be necessary for the classical
 case.)

 3.121.231. Suppose If is an Sc-IS.
 Then the end of the derivation runs :

 r?> 0, a r?>0, b
 n-^z r?> 0, A&B .

 n, r*--> 27*, 0, a & b mix

 (M occurs in T.) This is transformed into:

 n--+z r?> e, a . 77?> z r?? 0, b
 n. r*-> 2; e, a mix n, r??> z*, ?, b mix

 n, r*--+ z*, @, a & b &~IS
 Both mixes may be eliminated by virtue of the

 induction hypothesis.
 3.121.232. Suppose If is a y-IA.
 Then the end of the derivation runs :

 A,r~>e B,r-^e
 n?*z Ays, r?>@ .

 n, (A v B)*, r*~^s*, 0 mix
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 ( (A V B) * stands either for A V B or for nothing
 according as A V B is unequal or equal to M.)
 M certainly occurs in A (For otherwise M would

 be equal to A\/B, and the right rank would be
 equal to i contrary to 3.121.)

 To begin with, we transform the end of the
 derivation into:

 n-^z a, r?+ 0
 JJ A* JP* > ?* 0 mlx ' ? ' possibly several
 A, 77, r*?> Z*, 0 interchanges and

 thinnings
 77-^ Z B, f^ 0 .
 ? ' ' possibly several

 B, 77, r*~> Z*, 0 interchanges and
 thinnings

 ? y-iA.
 AVB, 77, r*?* z*, 0

 Both mixes may be eliminated by virtue of the
 induction hypothesis.

 From here on the procedure is the same as that in
 3.121.221 and 3.121.222, i.e., we distinguish two cases
 according as A V B is unequal or equal to M. In the
 first case we may have to add several interchanges to
 obtain the endsequent of the original derivation ;
 in the second case we add a mix with 77 ?> Z for
 its left-hand upper sequent, and thus once again
 obtain the endsequent of the original derivation by
 going on to perform a number of contractions and
 interchanges, if necessary. The mix concerned may
 be eliminated, since the associated right rank
 equals 1. (All this as in 3.121.222.)

 3.121.233. Suppose If is a =>-IA.
 Then the end of the derivation runs :

 r? 0, A B,A--+A
 77?? Z A^B, A A-->0,A .
 77, (A 3 B)*, r*, A*?>27*, 0, A miX

 3.121.233.1. Suppose M occurs in T'and A.
 In that case we begin by transforming the

 derivation into :

 n-^Z B,A-->A ,
 rr jj* a*_^ v* a mix ' ' ? possibly several inter

 B, 77, A*?>- Z*, A changesandthinnings
 n-->z r?> 0, A .
 n9 r*~> z*, 0, a mix  ^-IA

 A => B, 77, T*, 77, J*-* Z*, 0, Z* A

 Both mixes may be eliminated by virtue of the
 induction hypothesis. Then we proceed as in
 3.121.221 and 3.121.222. (All that may happen in
 the first case is that beside interchanges a number of
 contractions become necessary.)

 3-121.233.2. Suppose M does not occur in both
 r and A simultaneously. M must occur in either
 r or A because of 3.121. Consider the case of M
 occurring in A but not in jT. The second case is
 treated analogously.

 The end of the derivation is transformed into:

 n--*Z B,A--?A .
 n, b*, j*--> z*, a J?siWy several

 interchanges and
 r ~> 0, A B, n, A*?> Z*, A thinnings

 a=> B, r, n, j*--> 0, z*, a  =>-IA

 The mix may be eliminated by virtue of the
 induction hypothesis. We then proceed as in
 3.121.221 and 3.121.222. (In the second case, where
 A => B is equal to M, the right rank belonging to
 the new mix equals 1 as always, since M does not
 occur in B, 77, A* for the usual reason, nor does it
 occur in T according to the assumption of the
 case under consideration.)

 3.122. Suppose the right rank is equal to 1. In that
 case the left rank is greater than 1.

 This case is, in essence, treated symmetrically to
 3.121. Special attention is required only for those
 inference figures with no symmetric counterpart,
 viz., the =>-iSand the ^>-IA.

 The inference figures If with one upper sequent
 were incorporated, in 3.121.22, in the general
 schema :

 3,r-->Q2

 The symmetric schema runs :

 qx?> r, W
 q2?> r, 3

 which also includes a ^>-IS without any further
 change, (r here represents the formulae designated
 by 0 in the schemata 1.21, 1.22.)

 3.112.1. On the other hand, the case, where the
 inference figure If is a ^>-IA, must be treated
 separately. Although this treatment will seem very
 similar to that in 3.121.233, it is not entirely
 symmetric.
 Thus the end of the derivation runs :

 r?>0, A B,A--*A --- =>-IA
 A ^ B, r, A ?? 0, A 27 --> 77 .
 A 3 B, r, A, 27*?> 0*, A*, 77 miX

 3.122.11. Suppose M occurs both in 0 and A. In
 that case we transform the end of the derivation
 into:
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 0, A Z?>77 . mix

 i , ?, -> u , a , ii possibly several
 interchanges and
 thinnings

 B,A-^A z-->n .

 a => b, r, z*, a, e*-, 0*, n, a*, n possibly several
 A => B, r, A, Z*-^ 0*, A*, II contractions and

 interchanges.

 Both mixes may be eliminated by virtue of the
 induction hypothesis.

 3.122.12. Suppose M does not occur in both 0
 and A simultaneously. It must occur in one of them.

 We consider the case of M occurring in A but not
 in 0; the alternative case is completely analogous.
 We transform the end of the derivation into :

 B,A--+A 27?>77 .
 F --> 0, A B, A, 27*?> A*, 77 ^

 A 3 B, T, A, 27*?> 0, A*, 77

 The mix may be eliminated by virtue of the
 induction hypothesis.

 3.2. Proof of the Hauptsatz for LJ-derivations.
 In order to transform an LJ-derivation into an

 ZJ-derivation without cuts, we apply exactly the same
 procedure as for LTf-derivations.

 Since an LJ-derivation is a special case of an
 LTf-derivation, it is clear that the transformation
 can be carried out. We have only to convince
 ourselves that with every transformation step an
 LJ-derivation becomes another LJ-derivation, i.e.,
 that the 7)-sequents of the transformed derivation
 do not contain more than one ?S-formula in the
 succ?dent, given that this was the case before.
 We therefore examine each step of the trans?

 formation from that point of view.
 3.21. Replacement of cuts by mixes. An LJ-cut

 runs:

 r?>D Y),A?>A
 r,A-->A

 where A contains at most one ^-formula. We
 transform this cut into :

 r?>D D, A?>A .
 -r a*-^ a-rmix ' _possibly several interchanges

 r, A ?> A and thinnings in the ante?
 cedent.

 This replacement gives us a new ZJ-derivation.
 3.22. By replacing the free object variable (3.10)

 we trivially get another LJ-derivation from a
 previous one.

 3.23. The transformation proper (3.11 and 3.12).
 We have to show for each of the cases 3.111 to

 3.122.12 that the given transformations do not
 introduce any sequents with more than one S
 formula in the succ?dent.

 3.231. Let us begin with the cases 3.11 :
 In the cases 3.111, 3.113.1, 3-H3-31* 3-H3-35

 and 3.113.36, only such formulae occur in each
 succ?dent of the sequent of a new derivation as
 already occurred in the succ?dent of the sequent of
 the original derivation.

 Essentially the same applies in 1.113.33. The
 only difference is an additional substitution of free
 object variables, which does not, of course, alter
 the number of succ?dent formulae of a sequent.
 Cases 3.112, 3.113.32, and 3.113.34 were dealt

 with symmetrically to cases 3.111, 3.113.1,
 3.113.31, and 3.113.33, i.e., in order to get one case
 from another, we read the schemata from right to
 left instead of from left to right (as well as changing
 logical symbols, a process which is here of no
 consequence). Hence in the antecedent of one case
 we get precisely the same as in the succ?dent of
 another. For the antecedents of cases 3.111,3.113.1,
 3.113.31 and 3.113,33, the same applies as for the
 succedents, viz., in every antecedent of a sequent of
 the new derivation only such formulae occur as
 already occurred in an antecedent of a sequent of
 the original derivation.
 This disposes of all symmetric cases: 3.112,

 3.113.2, 3-II3-32 and 3.113.34.
 3.23. Now let us look at the cases, 3.12 :
 3.232.1. For the cases 3.121 it holds generally

 that Z* is empty, since in 77 ?> Z, Z must contain
 only one formula, and that formula must be equal
 to M.

 It is now obvious that in every succ?dent of a
 sequent only such formulae occur as already
 occurred in the succ?dent of a sequent of the
 original derivation.

 3.232.2. In the cases 3.122 it is somewhat more
 difficult to see that from an ZJ-derivation we
 always get another LJ-derivation. We must
 direct our attention, as we have already done in
 considering symmetric cases, to the antecedents in
 the schemata 3.121.
 At this point we distinguish two further sub?

 cases :

 3.232.21. The case which is symmetric to 3.121.1
 is trivial, since in every antecedent of a sequent of
 a new derivation (in case 3.121.1) only such
 formulae occur as already occurred in an ante?
 cedent of a sequent of the original derivation.
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 3.232.22. In the cases that are symmetric to
 3.121.2, the mix in the end of the derivation runs:

 q-->m z-->n
 Q, Z*--> 77

 where 77 contains at most one ?S-formula, and
 where Q ?> M is the lower sequent of an LJ
 inference figure in which at least one upper
 sequent contains M as a succ?dent formula.

 If we now look at the inference figure schemata
 1.21, 1.22, it becomes easily apparent that such an
 inference figure can only be a thinning, contraction,
 or interchange in the antecedent, or a V -IA, a
 Sc-IA, a 3-IA, a ?-74, and a =>-IA. Let us
 disregard for the moment the V -IA and the =>-Z4.
 Then all the possibilities enumerated above fall
 within the case symmetric to 3.121.22, where

 bother7 and ? always remain empty. (T corresponds
 to the 0 of the inference figure.) Thus we have the
 case which is symmetric to 3.121.221. Further?
 more, r is equal to M, i.e., 71* is empty, and 77
 contains at most one formula. Hence in the new
 derivation there never in fact occurs more than one
 formula in the succ?dent of a sequent.

 The case of a y-IA is symmetric to 3.121.231.
 Again, r is equal to M, T* is empty, and 77 con?
 tains at most one formula ; all is thus in order.
 There now remains the case of a ^>-IA, i.e.,

 3.122.1. In an LJ- ^>-IA, the 0 of the schema
 (1.22) is empty. Thus we have the case set out
 under 3.122.12. A* is also empty, and 77 contains
 at most one formula, which means that here, too,
 we again obtain an LJ-derivation from an LJ
 derivation.

 GLOSSARY

 All-Reichen?universal quantifier
 Annahmeformel?assumption formula
 Antezedenz?antecedent
 ?u?erstes Z^hen?terminal symbol
 Eigenvariable?proper variable
 Es-gibt-Zeichen?existential quantifier
 Faden?hranch
 Folgt-Zeichen?-implication symbol
 Grad?grade
 Grundformel?basic formula
 Hauptformel?principal formula
 Hauptsatz?Hauptsatz
 Herleitung?derivation
 Hilfssatz?lemma
 Inhaltlicher Sinn?intuitive sense

 Logische-Zeichen-Schlu?figur? operational inference figure
 Mischformel? mix formula
 Mischung?mix
 Mittelungszeichen?syntactic variable
 Nebenformel?side formula
 Nicht-Zeichen?negation symbol

 Oberformel?upper formula
 Obersequenz?upper sequent
 Oder~Z,eichen?disjunction symbol
 Rang?rank
 Satz?theorem
 Schlie?en?deduction
 Schlu??inference
 Schnitt?cut
 Sequenz?sequent
 Spiegelbidlich?dual
 Stammbaumform?tree form
 Struktur-Schlu?figur?structural inference figure
 Sukzedenz?succ?dent
 Teilformel?subformula
 Und-Zeichen?conjunction symbol
 Untersequenz?lower sequent
 Verd?nnung?thinning
 Vertauschung?interchange
 Zeichen f?r Bestimmtes?constant symbol
 Zusammenzeihung?contraction
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